-
                          Canada's #1 Source For
                            Everything Mushroom
Medicinal Mushroom Products, Wild Mushrooms, Spawn
Kits, Mushroom LogsCultures, & Mycology Supplies!

          Fungicopia

FUNGI ARE THE FUTURE

Reishi has been used as medicine in Asia for more than 2000 years. It has a deep rooted history in Chinese medicine, where it was only used by royalty and the lower class were sent to find this rare species, but not dare consume it. Since then, the Japanese have figured out how to cultivate it(and several other species), so now people can grow it, right at home. Reishi is also known as the 1000 Year Mushroom, for its apparent ability to extend ones life. With a name like 'Mushroom of Immortality, you know there are plenty of testimonials to support its powerful medicinal applications.


Personally, I have found that Chaga has far superior medicinal compounds found within, although I still maintain a regular regiment of reishi tea. Reishi has demonstrated a powerful effect on organisms that have been affected by radiation, making it a close herbal ally for people who are go these particular effects.


Here is a list of the main health benefits of consuming Reishi:


-Immune system booster   - Radiation therapy

- Immunotherapeutic          - Inhibition of angiotensin-converting enzyme

-Cancer Inhibition              - Blood sugar regulator

 -Anti-Tumor                         -Inhibiting platelet aggregation

  -Blood Pressure regulator   - Powerful Antioxidants 



Ganodermanondiol

Ganoderma lucidum, a species of the Basidiomycetes class, has been attracting international attention owing to its wide variety of biological activities and great potential as an ingredient in skin care cosmetics including "skin-whitening" products. However, there is little information available on its inhibitory effect against tyrosinase activity. Therefore, the objectives of this study were to investigate the chemical composition of G. lucidum and its inhibitory effects on melanogenesis. We isolated the active compound from G. lucidum using ethanol extraction and ethyl acetate fractionation. In addition, we assayed its inhibitory effects on tyrosinase activity and melanin biosynthesis in B16F10 melanoma cells. In this study, we identified a bioactive compound, ganodermanondiol, which inhibits the activity and expression of cellular tyrosinase and the expression of tyrosinase-related protein-1 (TRP-1), TRP-2, and microphthalmia-associated transcription factor (MITF), thereby decreasing melanin production. Furthermore, ganodermanondiol also affected the mitogen-activated protein kinase (MAPK) cascade and cyclic adenosine monophosphate (cAMP)-dependent signaling pathway, which are involved in the melanogenesis of B16F10 melanoma cells. The finding that ganodermanondiol from G. lucidum exerts an inhibitory effect on tyrosinase will contribute to the use of this mushroom in the preparation of skin care products in the future.


Kim JW, et al. 2016. Effects of Ganodermanondiol, a New Melanogenesis Inhibitor from the Medicinal Mushroom Ganoderma lucidumDepartment of Biomedical Chemistry,  27;17(11).

Lucidumol C

A new oxygenated lanostane-type triterpene, named lucidumol C, together with six known compounds, was isolated from the chloroform extract of the fruiting bodies of Ganoderma lingzhi. Structures were established based on extensive spectroscopic and chemical studies. Potential cytotoxic activities of the isolated compounds were evaluated against human colorectal carcinoma (HCT-116, Caco-2), human liver carcinoma (HepG2), and human cervical carcinoma (HeLa) cell lines using WST-1 reagent. Selectivity was evaluated using normal human fibroblast cells (TIG-1 and HF19). Among the compounds, lucidumol C showed potent selective cytotoxicity against HCT-116 cells with an IC50 value of 7.86 ± 4.56 µM and selectivity index (SI) >10 with remarkable cytotoxic activities against Caco-2, HepG2 and HeLa cell lines.


Amen YM. 2016. Lucidumol C, a new cytotoxic lanostanoid triterpene from Ganoderma lingzhi against human cancer cellsDepartment of Agro-Environmental Sciences, 70(3):661-6.

Neurological Health & Reishi

 Promoting neurogenesis is a promising strategy for the treatment of cognition impairment associated with Alzheimer's disease (AD). Ganoderma lucidum is a revered medicinal mushroom for health-promoting benefits in the Orient. Here, we found that oral administration of the polysaccharides and water extract from G. lucidum promoted neural progenitor cell (NPC) proliferation to enhance neurogenesis and alleviated cognitive deficits in transgenic AD mice. G. lucidum polysaccharides (GLP) also promoted self-renewal of NPC in cell culture. Further mechanistic study revealed that GLP potentiated activation of fibroblast growth factor receptor 1 (FGFR1) and downstream extracellular signal-regulated kinase (ERK) and AKT cascades. Consistently, inhibition of FGFR1 effectively blocked the GLP-promoted NPC proliferation and activation of the downstream cascades. Our findings suggest that GLP could serve as a regenerative therapeutic agent for the treatment of cognitive decline associated with neurodegenerative diseases. 


Huang S, et al. 2017. Polysaccharides from Ganoderma lucidum Promote Cognitive Function and Neural Progenitor Proliferation in Mouse Model of Alzheimer's Disease. Shanghai Key Laboratory of Signaling and Disease Research10;8(1):84-94.


Recently, Ganoderma lucidum spores (GLS) have shown anti-epileptic effects. However, there are no reports on the anti-epileptic effects of its chemical constituents ganoderic acids (GAs), and more research is needed to better understand the mechanism of GLS activity. In this work, rat primary hippocampal neurons in an in vitro model were used to assess the intervention effects of GAs on epileptiform discharge hippocampal neurons and expression of both BDNF and TRPC3, with the aid of immunofluorescence, MTT method and flow cytometry. It was found that BDNF and TRPC3 are expressed in all cells and were mainly localized in the cytoplasm. The fluorescence intensities of BDNF and TRPC3 in GAs groups were higher than those of normal control and model groups, especially at 80 μg/ml (P < 0.05). The apoptosis rate of neurons was inversely proportional to BDNF and TRPC3 changes (P < 0.01). Therefore, BDNF and TRPC3 should be involved in the occurrence and development of epilepsy. GAs might indirectly inhibit mossy fiber sprouting and adjust the synaptic reconstructions by promoting the expression of BDNF and TRPC3. Besides, GAs could exert a protective effect on hippocampal neurons by promoting neuronal survival and the recovery of injured neurons.


Yang ZW. 2016. Effects of ganoderic acids on epileptiform discharge hippocampal neurons: insights from alterations of BDNF,TRPC3 and apoptosis.   71(6):340-4.

Anti-Cancer Properties of Reishi

Possiible Treatment: 

RESULTS:

TGF-β1-induced reduction in E-cadherin expression was associated with a loss of epithelial morphology and cell-cell contact. Concomitant increases in N-cadherin and Fibronectin were evident in predominantly elongated fibroblast-like cells. The GLE suppressed the TGF-β1-induced morphological changes and the changes in cadherin expression, and also inhibited the formation of F-actin stress fibers, which are a hallmark of EMT. The GLE also inhibited TGF-β1-induced migration of TFK-1 cells.

CONCLUSION:

Our findings provide new evidence that GLE suppress cholangiocarcinoma migration in vitro through inhibition of TGF-β1-induced EMT. The GLE may be clinically applied in the prevention and/or treatment of cancer metastasis.


Li L, et al. 2016.  A supercritical-CO2 extract of Ganoderma lucidum spores inhibits cholangiocarcinoma cell migration by reversing the epithelial-mesenchymal transitionState Key Laboratory of Biocontrol, 15;23(5):491-7. 


Skin Carcinoma: 

Ganoderma lucidum total triterpenes were evaluated for its apoptosis-inducing and anti-cancer activities. Cytotoxicity and pro-apoptotic effect of total triterpenes were evaluated in human breast adenocarcinoma (MCF-7) cell line using MTT assay and DNA fragmentation analysis. Total triterpenes induced apoptosis in MCF-7 cells by down-regulating the levels of cyclin D1, Bcl-2, Bcl-xL and also by up-regulating the levels of Bax and caspase-9. Anti-carcinogenicity of total triterpenes was analysed using dimethyl benz [a] anthracene (DMBA) induced skin papilloma and mammary adenocarcinoma in Swiss albino mice and Wistar rats respectively. Topical application of 5mg, 10mg and 20mg total triterpenes reduced the incidence of skin papilloma by 62.5, 37.5 and 12.5% respectively. Incidence of the mammary tumour was also reduced significantly by 33.33, 66.67 and 16.67% in 10, 50 and 100mg/kg b.wt. total triterpenes treated animals respectively. Total triterpenes were also found to reduce the average number of tumours per animal and extended the tumour latency period in both the models. The results indicate the potential cytotoxicity and anti-cancerous activity of total triterpenes, there by opens up a path to the development of a safe and successive chemo preventive agent of natural origin.


Smina, et al. 2017. Ganoderma lucidum total triterpenes induce apoptosis in MCF-7 cells and attenuate DMBA induced mammary and skin carcinomas in experimental animals. Amala Cancer Research Centre, 813:45-51.


The mushroom Ganoderma lucidum (G. lucidum) has been used for centuries in Asian countries to treat various diseases and to promote health and longevity. Clinical studies have shown beneficial effects of G. lucidum as an alternative adjuvant therapy in cancer patients without obvious toxicity. G. lucidum polysaccharides (GLP) is the main bioactive component in the water soluble extracts of this mushroom. Evidence from in vitro and in vivo studies has demonstrated that GLP possesses potential anticancer activity through immunomodulatory, anti-proliferative, pro-apoptotic, anti-metastatic and anti-angiogenic effects. Here, we briefly summarize these anticancer effects of GLP and the underlying mechanisms.


Sohretoglu D, et al. 2017. Ganoderma lucidum Polysaccharides as An Anti-cancer Agent. Hacettepe University.


Colon Cancer: 

Consumption of reishi mushroom has been reported to prevent colon carcinogenesis in rodents, although the underlying mechanisms remain unclear. To investigate this effect, rats were fed a high-fat diet supplemented with 5% water extract from either the reishi mushroom(Ganoderma lingzhi) (WGL) or the auto-digested reishi G. lingzhi (AWGL) for three weeks. Both extracts markedly reduced fecal secondary bile acids, such as lithocholic acid and deoxycholic acid (colon carcinogens). These extracts reduced the numbers of Clostridium coccoides and Clostridium leptum (secondary bile acids-producing bacteria) in a per g of cecal digesta. Fecal mucins and cecal propionate were significantly elevated by both extracts, and fecal IgA was significantly elevated by WGL, but not by AWGL. These results suggest that the reishi extracts have an impact on colon luminal health by modulating secondary bile acids, microflora, mucins, and propionate that related to colon cancer.


Yang.Y, et al. 2017. Feeding of the water extract from Ganoderma lingzhi to rats modulates secondary bile acids, intestinal microflora, mucins, and propionate important to colon cancer. Graduate School of Biosphere Science,  81(9):1796-1804.


Lung Cancer:

Lung cancer causes huge mortality to population, and pharmaceutical companies require new drugs as an alternative either synthetic or natural targeting lung cancer. The conventional therapies cause side effects, and therefore, natural products are used as a therapeutic candidate in lung cancer. Chemical diversity among natural products highlights the impact of evolution and survival of fittest. One such neglected natural product is Ganoderma lucidum used for promoting health and longevity for a longer time. The major bioconstituents of G. lucidum are mainly terpenes, polysaccharides, and proteins, which were explored for various activities ranging from apoptosis to autophagy. The bioconstituents of G. lucidum activate plasma membrane receptors and initiate various downstream signaling leading to nuclear factor-κB, phosphoinositide 3-kinase, Akt, and mammalian target of rapamycin in cancer. The bioconstituents regulate the expression of various genes involved in cell cycle, immune response, apoptosis, and autophagy in lung cancer. This review highlights the inextricable role of G. lucidum and its bioconstituents in lung cancer signaling for the first time.


Gill. BS, et al. Ganoderma lucidum targeting lung cancer signaling: A review. Centre for Biosciences,  39(6):1010428317707437.


Breast Cancer: 

The medical mushroom Ganoderma lucidum (Reishi), a traditional Chinese medicine, has exhibited a promising anti-cancer effect. However, the molecular mechanism of its action on cancer cells remains unclear. Aberrant activation of Wnt/β-catenin signaling pathway is the cause of many types of cancer, including breast cancer. Here we investigated the effect of Reishi on Wnt/β-catenin signaling pathway and elucidated the molecular mechanism of its function in inhibiting breast cancer cells. We found that Reishi blocked Wnt/β-catenin signaling through inhibiting the phosphorylation of Wnt co-receptor LRP6. In human (MDA-MB-231) and mouse (4T1) breast cancer cell lines, Reishisignificantly decreased the phosphorylation of LRP6 and suppressed Wnt3a-activated Wnt target gene Axin2 expression. Administration of Reishi inhibited Wnt-induced hyper-proliferation of breast cancer cells and MDA-MB-231 cell migration. Our results provide evidence that Reishi suppresses breast cancer cell growth and migration through inhibiting Wnt/β-catenin signaling, indicating that Reishi may be a potential natural inhibitor for breast cancer.


Zhang Y. 2017.  Ganoderma lucidum (Reishi) suppresses proliferation and migration of breast cancer cells via inhibiting Wnt/β-catenin signaling.  Laboratory of Biomembrane and Membrane Biotechnology,  488(4):679-684.


Colorectal Cancer:

(NAG-1), a pro-apoptotic gene, was significantly upregulated in vivo and in vitro upon BSGLWE treatment at both mRNA and protein levels. In addition, the relative amounts of secreted NAG-1 in cell culture medium or serum of nude mice were all upregulated upon BSGLWE treatments, suggesting a role of NAG-1 in BSGLWE-induced anticolorectal cancer activity. This is the first study to show that BSGLWE inhibits colorectal cancer carcinogenesis through regulating genes responsible for cell proliferation, cell cycle and apoptosis cascades. These findings indicate that BSGLWE possesses chemopreventive potential in colorectal cancer which may serve as a promising anticancer agent for clinical applications. 

Na K, et al. 2017. Anticarcinogenic effects of water extract of sporoderm-broken spores of Ganoderma lucidum on colorectal cancer in vitro and in vivo. College of Pharmaceutical Sciences,  50(5):1541-1554.


Melanoma and Breast Cancer: 

Among the most important traditional medicinal fungi, Ganoderma lucidum has been used as a therapeutic agent for the treatment of numerous diseases, including cancer, in Oriental countries. The aim of this study is to investigate the anti-inflammatory, anticancer and anti-metastatic activities of Ganoderma lucidum extracts in melanoma and triple-negative breast cancer cells. Ganoderma lucidum extracts were prepared by using common organic solvents; MDA-MB 231 and B16-F10 cell lines were adopted as cellular models for triple-negative breast cancer and melanoma and characterized for cell viability, wound-healing assay and measurement of cytokines secreted by cancer cells under pro-inflammatory conditions (incubation with lipopolysaccharide, LPS) and pretreatment with Ganoderma lucidum extract at different concentrations. Our study demonstrates, for the first time, how Ganoderma lucidum extracts can significantly inhibit the release of IL-8, IL-6, MMP-2 and MMP-9 in cancer cells under pro-inflammatory condition. Interestingly, Ganoderma lucidum extracts significantly also decrease the viability of both cancer cells in a time- and concentration-dependent manner, with abilities to reduce cell migration over time, which is correlated with a lower release of matrix metalloproteases. Taken together, these results indicate the possible use of Ganoderma lucidumextract for the therapeutic management of melanoma and human triple-negative breast cancer. 


Barbieri A, et al. 2017.  Anticancer and Anti-Inflammatory Properties of Ganoderma lucidum Extract Effects on Melanoma and Triple-Negative Breast Cancer Treatment. Department of Abdominal Oncology, 28;9(3).


Lung Cancer:

  Activating mutation of epidermal growth factor receptor (EGFR) is correlated with malignant lung tumor. In our study, we demonstrated that recombinant LZ-8 (rLZ-8), a medicinal mushroom Ganoderma lucidum protein, induced cell cycle arrest and apoptosis by downregulating the expression of wild-type and mutated EGFR and inhibiting EGFR downstream effectors, AKT and ERK1/2 in lung cancer cells. We showed that rLZ-8 effectively inhibited lung cancer progression and suppressed EGFR expression of lung tumor lesions in mouse model. Functional studies revealed that rLZ-8 reduced the amount of EGFR in cell membranes by altering EGFR localization to enhance the EGF-induced degradation of EGFR. Mechanistically, we demonstrated that rLZ-8 bound to EGFR to induce EGFR autophosphorylation at tyrosine1045 and trigger ubiquitination by inducing the formation of EGFR/Cbl complexes, resulting in the degradation of EGFR; however, Cbl-shRNA abolished rLZ-8-induced EGFR degradation. We provide the first evidence showing that rLZ-8 inhibits growth and induces apoptosis of lung cancer cells by promoting EGFR degradation. The current findings therefore suggest a novel anti-cancer function of rLZ-8 that targeting EGFR overexpression or mutation as well as EGFR-dependent processes in cancer cells


Lin TY, et al. 2017. Induction of Cbl-dependent epidermal growth factor receptor degradation in Ling Zhi-8 suppressed lung cancer.  Program in Molecular Medicine,  1;140(11):2596-2607.



Chemotherapy and Reishi

The weight-loaded swimming capability, tumor growth, survival time and biochemical markers of Ganoderma lucidum polysaccharides (GLPs) in a chemotherapy-related fatigue mouse model were tested in the present study. The results showed that the middle-dose GLPs (GLP-M) and the high-dose GLPs (GLP-H) could increase the exhausting swimming time, which was observed to decrease in the cisplatin control group(PCG) and the tumor control group (TCG).The GLP-M and the GLP-H had reduced serum levels of tumor necrosis factor-αand interleukin-6, which were up-regulated by cisplatin. Cisplatin and the presence of tumor significantly enhanced the malondialdehyde (MDA) content and inhibited the activity of superoxide dismutase (SOD) in the muscle. Administration of GLPs at a high dose decreased the levels of MDA and up-regulated the SOD activity. The high-dose GLPs+cisplatin group presented a decreased tendency of tumor volume and a lower tumor weight compared with PCG. Moreover, the mice in the GLP-M and GLP-H groups had longer survival times compared with the mice in the TCG and PCG.The levels of creatinine and serum blood urea nitrogen, which are up-regulated by cisplatin, were significantly reduced by GLP-M and GLP-H. Therefore, these results suggest that GLPs might improve chemotherapy-related fatigue via regulation of inflammatory responses, oxidative stress and reduction of nephrotoxicity.


Ouyang MZ. 2016.  Effects of the polysaccharides extracted from Ganoderma lucidum on chemotherapy-related fatigue in miceDepartment of the oncology centre,  91:905-10.

Antioxidant Potential of Reishi

They were looking for antioxidant power and ended up finding it had antitumor properties as well:


In this study, a Ganoderma lucidum polysaccharide GLP-1-1 was isolated from a culture broth with Mw of 22014 Da. Monosaccharide contained glucose, mannose, and galactose with mole percentages of 92.33%, 7.55%, and 0.22%, respectively. Moreover, FTIR and methylation analysis were conducted to characterize the structural properties of GLP-1-1. The results of antioxidant activity analysis showed that GLP-1-1 had a great DPPH and ABTS radical scavenging activity. Meanwhile, GLP-1-1 also exhibited anti-tumor activity to A431 and MDA-MB-231 cells, and inhibitory rates were dose-dependent. During culturing with GLP-1-1, the G1/G0 cell percentage of A431 cells was increased from 48.64% to 84.52%, and the G1/G0 cell percentage of MDA-MB-231 cells was increased from 57.14% to 73.48%. Therefore, the anti-tumor activity of GLP-1-1 may be caused by inducing the G1/G0 arrest of tumor cells.


Ai-Lati A, et al. 2017.  Structure and bioactivities of a polysaccharide isolated from Ganoderma lucidum in submerged fermentation. National Engineering Laboratory for Cereal Fermentation Technology,  3;8(5):565-571.


Ganoderma lucidum (Leyss: Fr) Karst. (Polyporaceae) is an oriental medicinal fungus, commonly used in traditional Chinese medicine (TCM) for treating various condition or diseases such as hypertension, hyperglycaemia, hepatitis and cancer.

OBJECTIVE:

The current study examines whether triterpenoids and polysaccharide-enriched G. lucidum (GL) influence antioxidation and hepatoprotective efficacy by suppressing oxidative stress.

MATERIALS AND METHODS:

Forty-two healthy subjects (22 male and 20 female) were recruited and segregated into two groups as experimental or placebo and requested to intake GL (n = 21) or placebo (n = 21) capsule (225 mg; after lunch or dinner) for six consecutive months and vice versa with one month washout period in between. The anthropometric analysis and biochemical assays, as well as abdominal ultrasonic examination were performed.

RESULTS:

Consumption of GL substantially improved (p < 0.05) the total antioxidant capacity (TEAC; 79.33-84.04), total thiols and glutathione content (6-8.05) in plasma as well as significant (p < 0.05) enhanced the activities of antioxidant enzymes. Whereas, the levels of thiobarbituric acid reactive substances (TBARS; 3.37-2.47), 8-hydroxy-deoxy-guanosine (8-OH-dG; 15.99-11.98) and hepatic marker enzymes (glutamic-oxaloacetic transaminase; GOT and glutamic-pyruvic transaminase; GPT) were concomitantly reduced (42 and 27%) on treatment with GL. Furthermore, the abdominal ultrasonic examination in GL subjects displayed a notable alteration on hepatic condition by reversing from mild fatty liver condition (initial) to normal condition.

DISCUSSION AND CONCLUSION:

The outcome of the present intervention demonstrated the antioxidation, anti-aging and hepatoprotective nature of GL by effectively curbing oxidative stress.


Chiu HF, et al. 2017.  Triterpenoids and polysaccharide peptides-enriched Ganoderma lucidum: a randomized, double-blind placebo-controlled crossover study of its antioxidation and hepatoprotective efficacy in healthy volunteers. Department of Chinese Medicine, 55(1):1041-1046.

Genoprotective Capacity of Reishi

Ganoderma lucidum is traditionally used in Eastern medicine to preserve vitality, promote longevity, and treat disease. It possesses immunomodulatory, antitumor, antimicrobial, and antiaging activities, among others, but one of the most important is its antioxidant property, which is the basis for other effects, because free radicals trigger many diseases. The substrate commonly used for commercial cultivation of G. lucidum is not environmentally friendly nor economically justified, so there is a need to find new alternative substrates. The aim of this study was to analyze the effect of substrate composition on the bioactivity of G. lucidum basidiocarps. G. lucidum was cultivated on 2 different substrates: (1) a mixture of wheat straw, grapevine branches, and wheat bran, and (2) wheat straw. Commercial fruiting bodies, cultivated on oak sawdust, were used as the control. 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability, total phenols, and flavonoid content were determined spectrophotometrically to define the antioxidative potential of basidiocarp extracts. The comet test was performed to detect the degree of DNA damage in the cells that were exposed to G. lucidum extracts before and after the effect of oxidants. Higher antioxidative potential was observed for the extract of G. lucidum basidiocarps cultivated on wheat straw compared with that from the mixed substrate and especially with commercial ones. The alternatively cultivated basidiocarps also showed stronger antigenotoxic potential compared with commercial ones. The study showed that fruiting bodies produced on wheat straw, one of the most accessible and cheapest crop residues, are more potent antioxidant and antigenotoxic agents than commercially cultivated ones.


Cilerdzic J, et all. 2016. Genoprotective Capacity of Alternatively Cultivated Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), Basidiocarps. Institute of Botany and Botanical Garden, 18(12):1061-1069.   


Ganoderma lucidum has featured in traditional Chinese medicine for >1,000 years. Ganoderma polysaccharides (GL-PS), a major active ingredient in Ganoderma, confer immune regulation, antitumor effects and significant antioxidant effects. The aim of the present study was to investigate the efficacy and mechanism of GL‑PS‑associated inhibition of ultraviolet B (UVB)‑induced photoaging in human fibroblasts in vitro. Primary human skin fibroblasts were cultured, and a fibroblast photoaging model was built through exposure to UVB. Cell viability was measured by MTT assay. Aged cells were stained using a senescence‑associated β-galactosidase staining (SA‑β‑gal) kit. ELISA kits were used to analyze matrix metalloproteinase (MMP) ‑1 and C‑telopeptides of Type I collagen (CICP) protein levels in cellular supernatant. ROS levels were quantified by flow cytometry. Cells exposed to UVB had decreased cell viability, increased aged cells, decreased CICP protein expression, increased MMP‑1 protein expression, and increased cellular ROS levels compared with non‑exposed cells. However, cells exposed to UVB and treated with 10, 20 and 40 µg/ml GL‑PS demonstrated increased cell viability, decreased aged cells, increased CICP protein expression, decreased MMP‑1 protein expression, and decreased cellular ROS levels compared with UVB exposed/GL‑PS untreated cells. These results demonstrate that GL‑PS protects fibroblasts against photoaging by eliminating UVB‑induced ROS. This finding indicates GL‑PS treatment may serve as a novel strategy for antiphotoaging.


Zeng Q, et al. 2017.  Ganoderma lucidum polysaccharides protect fibroblasts against UVB-induced photoagingDepartment of Dermatology, 15(1):111-116.

Immunomodulatory Properties of Reishi

Mushrooms produce a wide range of bioactive polysaccharides, different from each other in chemical structure and biological effects. In the last years, the idea to develop functional foods or drugs containing fungal polysaccharides is attracting great attention. Fruiting bodies of Basidiomycetes Ganoderma lucidum are commonly used in Oriental medicine to treat several disorders. G. lucidum polysaccharides - mainly β-glucans and heteroglycans - have numerous biological properties such as antitumour and immunomodulatory activities. This report shows, by gene expression analyses and bioenergetic assays, immunomodulatory properties and capacity to improve glucose metabolism of a water-soluble heteroglycan extracted from mycelium of an Italian isolate of G. lucidum. The findings suggest the use of the heteroglycan as probiotic or ingredient in functional foods, being easy to produce and disperse in a food matrix thanks to its water-solubility. Heteroglycan could exert protective effects in pro-inflammatory conditions and benefits for people characterised by suppressed immune response.

 

Carrieri R, et al. 2017. Structural data and immunomodulatory properties of a water-soluble heteroglycan extracted from the mycelium of an Italian isolate of Ganoderma lucidum. Dipartimento di Colture Industriali, 31(18):2119-2125.

Cholesterol Lowering Properties of Reishi 

Cholesterol reduction: 

A proposed mechanism of action for the reduction in cholesterol levels is mediated by α-glucans and β-glucans from Gl, which promoted decreased absorption of cholesterol in the gut, as well as greater excretion of fecal bile acids and cholesterol. The prebiotic effects of Gl-1 and Gl-2 extracts modulated the composition of gut microbiota and produced an increase in the Lactobacillaceae family and Lactobacillus genus level compared to the control group, high-cholesterol diet group and group supplemented with simvastatin. Mexican genetic resources of Gl represent a new source of bioactive compounds showing hypocholesterolemic properties and prebiotic effects.


Meneses ME. 2016. Hypocholesterolemic Properties and Prebiotic Effects of Mexican Ganoderma lucidum in C57BL/6 Mice. CONACYT-Colegio de Postgraduados,  20;11(7):e0159631. 


CONCLUSIONS:

The effect of a high-cholesterol diet in the inflammatory response was observed in heart, liver, kidney, spleen, and colon tissues through histopathological evaluations. The presented evidence demonstrates that the inflammation response in the high-cholesterol diet group was much higher than in the other groups and the beta 1,3/1,6 glucan reduces inflammation in obese mice fed a high-cholesterol diet.


Wu YS. 2016. Ganoderma lucidum beta 1,3/1,6 glucan as an immunomodulator in inflammation induced by a high-cholesterol dietCollege of Life Science,  3;16(1):500.

 

Anti-Microbial Activity Potential of Reishi

: In summation, it has powerful antimicrobial effect, but should be used carefully because of potential genotoxic effect. 
Ganoderma lucidum (GL) is a mushroom used as a traditional remedy for the treatment of various infections since ancient times. This study, was aimed to investigate antimicrobial activity potential of GL against Staphylococcus aureus, Enterococcus faecalis, Listeria monocytogenes, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, Candida albicans, Candida glabrata, Candida krusei, and Candida parapsilopsis. Furthermore, it was also aimed to evaluate the toxicity potential of GL. Antimicrobial activities were screened by using microbroth dilution method. With regard to toxicity studies, cytotoxicity was evaluated by using XTT method against NIH3T3 cell lines, whereas genotoxicity study was conducted by Ames MPF 98/100 mutagenicity assay. Obtained data indicated that minimal inhibitory concentration values of the extract against the tested microorganisms ranged from 200 to 400μg/ml. No cytotoxic activity was observed related to the Ganoderma lucidum administrations. However, results of the Ames test pointed out a genetic damage with metabolic activation against TA98. At the highest concentration (5mg/ml) the extract showed 2.71 fold increase over the baseline significantly. (p<0.05). In conclusion, in spite of significant antimicrobial effect potential, Ganoderma lucidum should be used carefully because of its genotoxicity potential.

Ergun, B. 2017.  Evaluation of antimicrobial, Cytotoxic and genotoxic activities of Ganoderma lucidum (Reishi mushroom). Department of Toxicology.  

Anti-Inflammatory Effects of Reishi

Non-steroidal anti-inflammatory drugs often cause ulcers in the human small intestine, but few effective agents exist to treat such injury. Ganoderma lucidum Karst, also known as "Reishi" or "Lingzhi", is a mushroom. We previously reported that a water-soluble extract from G. lucidum fungus mycelia (MAK) has anti-inflammatory effects in murine colitis induced by trinitrobenzene sulfonic acid, and induction of granulocyte macrophage colony-stimulating factor (GM-CSF) by MAK may provide anti-inflammatory effects. However, its effects on indomethacin-induced small intestinal injuries are unknown. The present study investigated the preventative effects of MAK via immunological function and the polysaccharides from MAK on indomethacin-induced ileitis in mice. Peritoneal macrophages (PMs) were stimulated in vitro with MAK and adoptively transferred to C57BL/6 mice intraperitoneally, which were then given indomethacin. Intestinal inflammation was evaluated after 24h. We performed in vivo antibody blockade to investigate the preventive role of GM-CSF, which derived from PMs stimulated with MAK. We then used PMs stimulated with MAK pre-treated by pectinase in an adoptive transfer assay to determine the preventive role of polysaccharides. Indomethacin-induced small intestinal injury was inhibited by adoptive transfer of PMs stimulated in vitro with MAK. In this transfer model, pre-treatment with anti-GM-CSF antibody but not with control antibody reversed the improvement of small intestinal inflammation by indomethacin. Pectinase pretreatment impaired the anti-inflammatory effect of MAK. PMs stimulated by MAK appear to contribute to the anti-inflammatory response through GM-CSF in small intestinal injury induced by indomethacin. The polysaccharides may be the components that elicit the anti-inflammatory effect.

Nagai. K, et all. 2017.  Polysaccharides derived from Ganoderma lucidum fungus mycelia ameliorate indomethacin-induced small intestinal injury via induction of GM-CSF from macrophages. Department of Medicine and Molecular Science,  320:20-28.

Pancreatitis: 
The antioxidative activity of GLPS3-Ⅱfrom cultured mycelia in vitro is higher than other two polysaccharides. The superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in serum were increased while the malondialdehyde (MDA) levels were reversely decreased by GLPS3 treatment. Serum amylase (AMS) and lactic dehydrogenase (LDH) changes indicated the therapeutic effects of GLPS3. Moreover, interleukin-1beta (IL-1β) and interferon-gamma (INF-γ) contents were reduced most by GLPS3-Ⅱ. The results revealed that GLPS3 especially GLPS3-Ⅱfrom cultured mycelia were effective for CP therapy and bioactivity difference might be attributed to monosaccharide composition.

Li K, et al. 2016. Three kinds of Ganoderma lucidum polysaccharides attenuate DDC-induced chronic pancreatitis in mice. College of Resources and Environmental Science. 5;247:30-8.

Blood Sugar Modulating Effects(For Diabetics)

Seven new compounds including four lanostane triterpenoids, lucidenic acids Q-S (1-3) and methyl ganoderate P (4), and three triterpene-farnesyl hydroquinone conjugates, ganolucinins A-C (5-7), one new natural product ganomycin J (8), and 73 known compounds (9-81) were isolated from fruiting bodies of Ganoderma lucidum. The structures of the compounds 1-8 were determined by spectroscopic methods. Bioactivities of compounds isolated were assayed against HMG-CoA reductase, aldose reductase, α-glucosidase, and PTP1B. Ganolucidic acid η (39), ganoderenic acid K (44), ganomycin J (8), and ganomycin B (61) showed strong inhibitory activity against HMG-CoA reductase with IC50 of 29.8, 16.5, 30.3 and 14.3μM, respectively. Lucidumol A (67) had relatively good effect against aldose reductase with IC50 of 19.1μM. Farnesyl hydroquinones ganomycin J (8), ganomycin B (61), ganomycin I (62), and triterpene-farnesyl hydroquinone conjugates ganoleuconin M (76) and ganoleuconin O (79) possessed good inhibitory activity against α-glucosidase with IC50 in the range of 7.8 to 21.5μM. This work provides chemical and biological evidence for the usage of extracts of G. lucidum as herbal medicine and food supplements for the control of hyperglycemic and hyperlipidemic symptoms.


Chen B, et al. 2017.  Triterpenes and meroterpenes from Ganoderma lucidum with inhibitory activity against HMGs reductase, aldose reductase and α-glucosidaseInstitute of Microbiology. 120:6-16.